tg-me.com/ds_interview_lib/540
Last Update:
Что такое обучение представлений?
Объекты, с которыми работают алгоритмы машинного обучения, могут быть невероятно разнообразными и часто состоят из множества низкоуровневых компонентов, таких как цвет пикселя, амплитуда звукового сигнала в конкретный момент времени или буква в тексте. Эти компоненты сами по себе несут мало информации, но вместе формируют более сложные структуры, такие как музыка, изображения или текст.
Задача заключается в том, чтобы преобразовать сложные объекты в представления, которые легче анализировать и использовать для решения различных задач. Этот процесс называется обучением представлений, и он позволяет выделить информативные признаки объектов, которые можно применять для решения задач классификации, кластеризации и других.
Один из самых мощных инструментов для обучения представлений — это нейронные сети. Например, в свёрточных нейросетях для изображений первые слои обучаются выделять низкоуровневые признаки, такие как края объектов, тогда как более глубокие слои могут представлять более сложные концепции, такие как формы или даже целые объекты.
#глубокое_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/540